Formative Exercise

Skill 1: Measurement of Length & Time

Measuring the Length of a Box

Using a Ruler

1 The diagram shows a ruler being used to measure the length L of a box.

- a) Write down the length L of the box in centimetres and include the unit symbol.
- b) Write down the length L of the box in SI units and include the unit symbol.
- c) Write down the length \boldsymbol{L} of the box in millimetres and include the unit symbol.
- d) Write down the length ${\bf L}$ of the box in SI units and in scientific notation using as 10^{-3} as a power of 10.
- 2 The experimental uncertainty in a measurement may be taken as the smallest division on the instrument's scale.
 - a) Write down the experimental uncertainty ΔL for the length L of the box in millimetres and include the unit symbol.
 - b) The accuracy of a measurement is indicated by the number of significant figures quoted. Explain what is meant by the significant figures of a measurement.

Parallax Error

c) Write down the length L of the box in SI units, with its experimental uncertainty ΔL and give the number of significant figures it is quoted to.

$$L = \Delta L = (_ = _) \times 10^3 _ to _ sf.$$

- 3 The diagram illustrates the common error of parallax when reading a ruler.
 - a) Explain what error is caused by placing the eye in the wrong position shown.

 $\mathbf{0}$

b) Explain what must be done to avoid parallax error.

Magauning Thine

Using a Stopwatch

- 4 The diagram shows a digital stopwatch being used to measure the time t for a golf ball to roll down a slope. Several values are taken.
 - a) Each reading is taken by starting the stationary golf ball at the top of the slope. Why is this necessary?

- b) The reading shown by the stopwatch in the diagram is 2.23 s.
 - (i) Write down the experimental uncertainty Δt that this reading for the time t suggests.
 - (ii) Write down the number of significant figures this reading is accurate to.
- c) The table below shows the results of the taking several measurements.

†(s) 2.38 2.12 2.67 2.56 2.78 2.48 2.63 2.23 2.39 2.98

- (i) Calculate the average value, showing your working clearly.
- (ii) Write down the average time to the correct number of significant figures as indicated by the above data.
- (iii) The range R of the data is defined as the maximum value minus the minimum value. Calculate the range.

||log||ln||

<u>sin-1</u> cos-1 tan-1

ENG sin cos tan +/=

SCIENTIFIC CALCULATOR

- (iv) The experimental uncertainty Δt in the average time t is taken to be half the range R. Calculate Δt .
- (v) Give an explanation why the experimental uncertainty Δt in the average time t is much larger than the 0.01 s accuracy of the stopwatch.

MagarinjagaMalumas

Using a Measuring Cylinder

- 1 The diagram shows a measuring cylinder containing a volume V_1 of water. A steel ball is lowered carefully into the cylinder so that the volume of water is increased to V_2 .
 - a) Write down the volume V_1 of the water in millilitres and include the unit symbol.
 - b) Write down the volume V_2 of the water in millilitres and include the unit symbol.
 - c) Calculate the volume ${f V}$ of the steel ball in millilitres, showing your working clearly.
 - d) Write down the volume V of the steel ball in millilitres, with its experimental uncertainty ΔV and give the number of significant figures it is quoted to.

$$V = \Delta V = _{=}$$
 to _sf.

Measuring Force

Using a Spring Balance

- 2 The diagram shows a spring balance being used to measure the weight \mathbf{F}_{g} of the suspended mass.
 - a) Write down the weight \mathbf{F}_{g} of the suspended mass and include the unit symbol.
 - b) What unit does the unit symbol stand for?
 - c) Write down the weight $\textbf{F}_{_{\!g}}$ of the suspended mass, with its experimental uncertainty $\Delta \textbf{F}_{_{\!g}}$ and give the number of significant figures it is quoted to.

$$\mathbf{F}_g \mp \Delta \mathbf{F}_g = \underline{\qquad} \mp \underline{\qquad} \text{to} \underline{\qquad} \text{sf.}$$

Magauring Tamparature

Using a Thermometer

- 3 The diagram on the next page shows a thermometer being used to measure the temperature θ of the surrounding air.
 - a) Write down the temperature $\boldsymbol{\theta}$ of the surrounding air and include the unit symbol.

page 4

Volume of a Steel Ball

Spring Balance

()

()

c) Write down the temperature 0 of the surrounding air, with its experimental uncertainty $\Delta\theta$ and give the number of significant figures it is quoted to.

 $\theta \mp \Delta \theta = \underline{\hspace{0.2cm}} \mp \underline{\hspace{0.2cm}}$ to $\underline{\hspace{0.2cm}}$ sf.

Warening Panety

Using Vernier Callipers

- 4 The diagram shows vernier callipers being used to measure the diameter d of a steel ball.
 - a) Write down the diameter d of the steel ball in millimetres and include the unit symbol.

Vernier Callipers

- b) Write down the diameter $\bf d$ of the steel ball in SI units and in scientific notation using as 10^{-3} as a power of 10.
- c) Write down the diameter $\bf d$ of the steel ball, with its experimental uncertainty $\Delta \bf d$ and give the number of significant figures it is quoted to.

Measuring Length

Using a Micrometer Screw Gauge

5 The diagram shows a micrometer screw gauge being used to measure the diameter d of the same steel ball as used in question 4.

- a) Write down the diameter d of the steel ball in millimetres and include the unit symbol.
- b) Write down the diameter d of the steel ball in SI units, with its experimental uncertainty Δd and give the number of significant figures it is quoted to.

Formative	
Exercise	

Skill 3: Plotting Graphs

Wasaning Voluma

Using a Syringe

- 1 Diagram 1 shows a syringe containing a trapped mass of air maintained at room temperature. Diagrams 2, 3 and 4 show the syringe loaded with similar books to compress the trapped air.
 - a) The table below is of the volume V of the trapped air versus the number of books N. By examining the diagrams carefully, complete the data table.

N (no unit)	0	1	2	4
V (mL)				

- b) The number of books N is the independent variable. Why is this?
- c) The volume V of the trapped air is the dependent variable. Why is this?
- d) Identify the variable to go on each axis when graphing V versus N.

Plotting the Graph

- 2 Use the graph paper to plot a graph of the volume V of the trapped air versus number of books N, by following this procedure:
 - a) Choose a range which covers the majority of the graph paper for both scales. The chosen range does not necessarily start from zero. Write down the range for each axis.

Naxis: _to _ Vaxis: _ to __

 b) Choose appropriate linear scales which are easy to use. Write down the scale for each axis.

N axis: 1 main square = _____ V axis: 1 main square = ____

- c) Label each axis with the quantity, formula symbol and unit symbol.
- d) Write an appropriate title to the graph.

()

- e) Plot the data points using crosses so are clearly shown.
- f) Draw a best-fit curve to show the shape of the graph.

Interpolation and Extrapolation

- 3 The graph can produce information using the processes of interpolation or extrapolation.
 - a) Explain what is meant by interpolation.
 - b) Using interpolation and showing your working on the graph, determine the volume ${f V}$ of the trapped air when 3 books are placed on the syringe.
 - c) Explain what is meant by extrapolation.
 - d) Using extrapolation and showing your working on the graph, determine the volume V of the trapped air when ${\bf 5}$ books are placed on the syringe.

Skill 4: The Straight Line Graph

Measuring Tempereture:

Using Fahrenheit and Celsius Thermometers

- 1 The diagram shows a beaker of hot water and two thermometers. One thermometer is calibrated in the Fahrenheit scale θ_{F} and the other in Celsius θ_{c} . The readings of the two thermometers are taken as the water cools. The results table is shown below.
 - a) By examining the results table carefully, write down the independent variable. Explain your answer.

θ_c (°C)	55	50	45	40	35	30	25	20	15
θ _ε (°F)	133	120	113	106	93	86	78	67	59

1011	ring	the Graph	
2 Gr	raph	paper is supplied on the previous page.	
a)		e the graph paper to plot a graph of the Fahrenheit to Isius temperature θ_{c} .	emperature $ heta_{\scriptscriptstyle extsf{F}}$ versus the
b)		e relationship between the two temperature scales $\boldsymbol{\theta}_{\text{F}}$ at this means.	and θ_c is linear. Explain
		aw a best-fit straight line through the points using a	ruler.
	•	g the Graph	Straight Line Graph
		iagram shows a general representation of a straight aph.	
	Th by	e general equation for a straight line graph is given Y = mX + c. Write down the definitions of each of e symbols in the equation.	y slope m = rise run
			7
		alyse the $\theta_{\rm F}$ versus $\theta_{\rm c}$ graph by following this ocedure: Calculate the slope m of the graph.	run »>
	pro (i)	ocedure:	
	pro (i) (ii)	ocedure: Calculate the slope m of the graph.	is.
	pro (i) (ii)	Calculate the slope m of the graph. Write down the value of the intercept c on the θ_{F} axi Write down the general straight line equation and ide	is.
	pro (i) (ii)	Calculate the slope m of the graph. Write down the value of the intercept c on the θ _F axi Write down the general straight line equation and ide symbols to replace Y and X .	is.
	pro (i) (ii)	Calculate the slope m of the graph. Write down the value of the intercept c on the $\theta_{\rm F}$ axi Write down the general straight line equation and ide symbols to replace Y and X . General equation for a straight line graph is	is.
	pro (i) (ii) (iii)	Calculate the slope m of the graph. Write down the value of the intercept c on the $\theta_{\rm F}$ axi Write down the general straight line equation and ide symbols to replace Y and X . General equation for a straight line graph is Replacement variable symbol for Y is	is. entify the variable rsus θ _c graph by
	pro (i) (ii) (iii)	Calculate the slope m of the graph. Write down the value of the intercept c on the $\theta_{\rm F}$ axis Write down the general straight line equation and ideasymbols to replace Y and X . General equation for a straight line graph is Replacement variable symbol for Y is Replacement variable symbol for X is Write down the final empirical equation for the $\theta_{\rm F}$ ver substituting the replacement symbols for Y and X and	is. entify the variable rsus θ _c graph by d the values of m and c

Formative Exercise

Skill 5: Power Laws

Power Lave

Graphical Shapes

The diagram shows the graphical shapes for four examples of power laws. The power law is represented by the statement:

$$Y \propto X^r$$

which states that the dependent variable $\mathbf Y$ is proportional to independent variable $\mathbf X$ to the power of $\mathbf n$.

This statement can be written as an equation:

$$Y = mX^n$$

which can be verified by plotting a graph of Y versus Xⁿ as shown in the diagram. The graph is a straight line through the origin whose slope = m.

Direct Proportion

The Bending of a Ruler

1 The diagram shows the bending of a metre rule. The dependent variable is the depression d of the metre rule. The two independent variables are the length of the ruler L which is free to bend and the mass M of the mass-stack. The data table shown below is of d versus M for a fixed value of L.

Examples of Power Laws

Verification of a Power Law

Bending of a Ruler

M (kg)	0.10	0.15	0.20	0.25	0.50	0.35	0.40	0.45	0.50
d (m)	0.09	0.14	0.18	0.23	0.28	0.31	0.37	0.40	0.45

- a) Explain why a fixed value of L is chosen.
- b) Use the graph paper on the next page to plot a graph of the depression d of the metre rule versus the mass M of the mass-stack.

- c) Describe the shape of the graph and the relationship between ${\bf d}$ and ${\bf M}$.
- d) Calculate the slope \mathbf{m} of the graph and include its unit.
- e) Write down the empirical formula connecting d and M.

Square Roof Power Law

Mass Oscillating on the End of a Spring

- 2 The diagram shows a mass-stack, of mass M, oscillating with period T on the end of a spring. The results table below shows values of the period T for different values of the mass M.
 - a) Use the graph paper on the next page to plot a graph of the period T of the oscillations versus the mass M of the mass stack.

M (kg)	0.05	0.10	0.15	0.20	0.30	0.40	0.50
T (s)	0.63	0.89	1.09	1.26	1.54	1.78	1.99
√M (√kg)							

√M (√kg)

- b) Describe the shape of the T versus M graph.
- c) Calculate the values of \sqrt{M} in the last row of the results table.
- d) Use the above graph paper to plot a graph of the period T of the oscillations versus \sqrt{M} .
- e) Describe the shape of the T versus \sqrt{M} graph and the relationship between T and \sqrt{M} .
- f) Calculate the slope m of the T versus \sqrt{M} graph and include its unit.
- g) Write down the empirical formula connecting T and \sqrt{M} .

Significa Power Law

Golf Ball Rolling Down a Slope

- 3 The diagram shows a golf ball rolling down a slope from rest. It travels a distance d in time t. The results table below shows values of the distance d for different values of the time t.
 - a) Use the graph paper below to plot a graph of the distance d down the slope versus the time taken t. Though d is the independent variable it is plotted along the vertical axis to aid the analysis.

Golf Ball Rolling Down a Slope

Time t

Golf ball starts

from rest

† (s)	1.41	2.00	2.45	2.83	3.16	3.46	3.74	4.02	4.24	4.47
d (m)	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
†² (s²)									***	

- b) Describe the shape of the d versus t graph.
- c) Calculate the values of t^2 in the last row of the results table.
- d) Use the above graph paper to plot a graph of the distance d down the slope versus the square of the time taken t^2 .
- e) Describe the shape of the d versus t^2 graph and the relationship between d and t^2 .
- f) Calculate the slope m of the d versus t^2 graph and include its unit.
- g) Write down the empirical formula connecting d and t^2 .

Inverse Power Law

Acceleration of a Trolley

4 The diagram shows a loaded trolley being accelerated with acceleration a. The computer arrangement records the acceleration a for different masses M of the system (loaded trolley plus the fixed accelerating mass). The results table below shows values of the acceleration a for different values of the mass M.

M (kg)	0.50	0.75	1.0	1.25	1.5	1.75	2.0
a (m s ⁻²)	5.0	3.3	2.5	2.0	1.7	1.4	1.3
1/M (kg ⁻¹)							

- a) Use the graph paper on the next page to plot a graph of the acceleration ${\bf a}$ of the loaded trolley versus the system's mass ${\bf M}$.
- b) Describe the shape of the a versus M graph.
- c) Calculate the values of reciprocal of the system's mass 1/M in the last row of the results table.
- d) Use the graph paper on the next page to plot a graph of the acceleration a versus the reciprocal of the system's mass 1/M.
- e) Describe the shape of the a versus 1/M graph and the relationship between a and 1/M.

 \bigcirc

()

M (kg) 1/**M** (kg⁻¹)

- f) Calculate the slope m of the a versus 1/M graph and include its unit.
- g) Write down the empirical formula connecting \mathbf{a} and \mathbf{M} .

Self-assessment
Test

Practical Physics Skills

Multi-choice Assessment

The Length of a Pencil

- 1 The diagram shows a ruler being used to measure the length of a pencil.
- a) The length of the pencil is:

A 1.0 cm

B 7.5 cm

C 8.5 cm

D 9.5 cm

E 10.0 cm

11

- b) Place a 'T' if true or an 'F' if false beside each of the following statements.
 - (i) 1 cm is the smallest division on the ruler.
 - (ii) The experimental uncertainty in the length of the pencil is 1 mm.
 - (iii) The length of the pencil is 75 ∓ 1 mm.
- c) It is incorrect to write the length of the pencil as:

A 75 mm

 $B 75 \times 10^{-3} \text{ m}$

C 7.5 cm

 $D 7.5 \times 10^{-2} \text{ cm}$

E 0.75 m

Golf Ball Rolling Down a Slope

11

1√ 1√

1/

Timing a Rolling Golf Ball

The diagram shows the timing of a golf ball rolling down a slope. Three readings of the golf ball travelling the full length of the slope from rest are:

3.49 s 3.58 s 3.69 s

a) The average time is best quoted as:

A 3.5866667 s B 3.587 s

C 3.58 s

D 3.59 s

E 3.6 s

- b) Place a 'T' if true or an 'F' if false beside each of the following statements.
 - (i) The experimental uncertainty of the stop watch is 0.01 s.
 - (ii) The range of the three readings is 0.2 s.
 - (iii) The experimental uncertainty in the average time is about 0.1 s.

1/

1/

Graphing Power Laws

3 The diagram on the next page shows five graphical shapes for Y plotted

- against X, labelled A to E.

 a) The graph that shows Y is proportional to X is:
- b) The graph most likely to show that Y is inversely proportional to X is:
- c) The graph most likely to show that Y is proportional to X^2 is:
- d) The graph most likely to show that Y is proportional to \sqrt{X} is:

1/

11

Page total = /13/

e) The graph the most likely to show the general equation Y = mX + c is:

f) The graph the most likely to the following data is:

X	1	2	3	4
У	1	4	9	16

g) For the data in question f), a straight line through the origin is obtained if the following graph is plotted:

A Y versus X B Y versus X^2 D Y versus 1/X E Y versus $1/X^2$

Plotting and Analysing a Graph

- 4 The diagram below shows a graph of Y versus X.
- a) Place a 'T' if true or an 'F' if false beside each of the following statements.
 - (i) The axes are labelled correctly.
 - (ii) The scales for axes have been chosen appropriately.
 - (iii) The points are plotted with the correct symbol.

- 1/
- b) Place a 'T' if true or an 'F' if false beside each of the following statements.
 - (i) Y is proportional to X.
 - (ii) Y varies linearly with X.
 - (iii) The variation of Y with X is a power law.

1/

- c) The slope of the graph is:
 - A 1.1 m s⁻¹ B 1.1 s m⁻¹
 - C 0.91 m s⁻¹ D 0.91 s m⁻¹

E 0.09 m

d) The empirical formula describing the variation of Y with X, using SI units is:

$$A \mathbf{Y} = 0.91 \mathbf{X} + 0.09$$

$$B Y = 0.91X - 0.10$$

$$C Y = 1.1X + 0.09$$

$$D Y = 1.1X - 0.10$$

$$E Y = 0.91X + 0.10$$

Test Total =

√'s out of a maximim of 24 √'s

Page total = /11/

